Energy modeling and analysis of dual fuel heating systems in single-family homes

Gas emerging technologies program (GET)

ET23SWG005: Final Presentation for GET Outreach Event

October 22, 2024

Our Team

Saurabh Shekhadar, CEM, EIT, CDCP Energy Engineer, ICF

Steven Long, P.E.

Director of Engineering, ICF

Nicholas Fette

Senior Energy Engineer, Lincus

Cristalle Mauleon

Engineering Manager, Lincus

Agenda

- Introduction
- Research objectives
- Literature review and subject matter expert interview findings
- Energy models and methodology
- Annual operating cost vs emissions trade-off
- Simulation results: Hourly trends
- Parametric analyses
- Key parameter correlations
- Findings

Introduction: Dual fuel heating technology and configurations

- Introduction to dual fuel heating systems
- Configurations
- Switchover temperature and associated factors
- Emissions and economic balance point

House A: Central AC outdoor unit and gas furnace House B: Air source heat pump and gas furnace

[1] Combating High Fuel Prices with Hybrid Heating, Report by CLASP and RAP, July 2022

Research objectives

- To determine the technical feasibility of dual fuel heating technology for single-family homes using EnergyPlus and spreadsheet analysis
- To determine the potential for emissions reduction from dual fuel space heating in single-family homes in California
- To analyze the impact of switchover temperature on total energy consumption and operating costs
- To determine the cost effectiveness of installing dual fuel heating system based on TRC and TSB tests (Metrics of cost effectiveness in CA)

Literature review and subject matter expert interview findings

- About 47% of the U.S. homes are good candidates for retrofit of AC with a heat pump. (CLASP and RAP Report, July 2022)
- About 62% of the total homes in California have natural gas furnaces as their main heating equipment. (RECS Survey, 2020)
- Stronger market demand for dual fuel technology in residential sector. (NEEA Study 2023)
- Adoption of dual fuel heating systems is common in Northeast and Mid-Atlantic regions.
- Potential barriers of adoption of dual fuel technology.
- Pre-qualifications required for installing dual fuel heating systems.

Energy models and methodology

- Synthetic model for dual fuel heating combines two otherwise identical models for gas furnace and heat pump
- Calculations are end-use specific, using time series outputs for heating and fans during heating mode

Value

Model assumption

Baseline	Dual fuel heating
Gas furnace and AC	Gas furnace and AC Heat pump Electric usage

Nodel decamption			
Building energy model	DEER EnergyPlus Single Family		
Vintage	Median existing (circa 1975/1985 building energy code)		
Size	Small (1-story / 1,400 ft ²)		
Gas furnace efficiency	95% AFUE		
Heat pump efficiency	15.2 SEER2 / 16 SEER 7.7 HSPF2 / 9.0 HSPF		
Simulation time step	10 minutes		
Cost and emissions calculation granularity	Hourly		
Emissions sources	California Avoided Cost Calculator (ACC 2022)		

Climate zone	Gas tariff	Electric tariff for flat-rate analysis	Electric tariff for TOU analysis
CZ 16	SCG GR	SCE D	SCE TOU-D-4-9PM
CZ 11	PG&E G-1	PG&E E-1	PG&E E-TOU-C

Emissions Savings and Cost Increase

	Annual HVAC Fuel Cost ^a [\$]				Annual HVAC Emissions [tonnes CO2]		
Climate Zone	Gas Furnace	Heat Pump	Preferred System for Minimum Cost	Preferred System for Minimum Emissions	Gas Furnace	Heat Pump	Preferred System for Minimum Emissions
1	\$166.28	\$446.25	\$166.26	\$405.20	0.497	0.414	0.408
2	\$317.68	\$728.43	\$317.67	\$709.34	0.918	0.708	0.705
3	\$249.01	\$543.89	\$249.01	\$540.91	0.701	0.509	0.509
4	\$222.76	\$485.60	\$222.76	\$482.07	0.631	0.470	0.470
5	\$263.16	\$587.02	\$263.16	\$584.98	0.745	0.547	0.546
6	\$145.37	\$268.53	\$145.37	\$268.01	0.434	0.310	0.310
7	\$214.19	\$360.88	\$214.19	\$360.64	0.425	0.287	0.287
8	\$147.95	\$250.76	\$147.87	\$249.64	0.427	0.287	0.286
9	\$163.66	\$294.76	\$163.66	\$294.43	0.493	0.348	0.348
10	\$89.24	\$205.47	\$89.24	\$186.16	0.281	0.248	0.244
11	\$222.63	\$518.13	\$222.62	\$462.14	0.620	0.523	0.514
12	\$221.58	\$521.02	\$221.57	\$475.46	0.620	0.527	0.519
13	\$229.93	\$501.86	\$229.93	\$480.80	0.627	0.510	0.506
14	\$233.61	\$458.06	\$233.57	\$441.93	0.698	0.541	0.539
15	\$73.07	\$134.03	\$73.04	\$126.23	0.219	0.165	0.162
16	\$124.83	\$282.56	\$124.81	\$247.45	0.393	0.336	0.319

Emissions Savings and Cost Increase, Continued

Climate Zone	Emissions Savings: Dual Fuel Over heat Pump (MT CO2)	Emission Savings as percent of Heat Pump Emissions (MT CO2)	Cost <u>Savings</u> : Dual Fuel Over Heat Pump	Cost Savings (% of Heat pump Cost)	Cost <u>Increase</u> : Dual Fuel Over Gas Furnace	Cost increase (% of Gas Furnace Cost)
01	0.0062	2%	\$41.05	9%	\$238.92	144%
02	0.0035	0%	\$19.09	3%	\$391.66	123%
03	0.0006	0%	\$2.98	1%	\$291.90	117%
04	0.0007	0%	\$3.54	1%	\$259.31	116%
05	0.0004	0%	\$2.03	0%	\$321.82	122%
06	0.0002	0%	\$0.52	0%	\$122.64	84%
07	0.0000	0%	\$0.24	0%	\$146.46	68%
08	0.0002	0%	\$1.12	0%	\$101.69	69%
09	0.0001	0%	\$0.33	0%	\$130.77	80%
10	0.0036	1%	\$19.31	9%	\$96.91	109%
11	0.0099	2%	\$55.99	11%	\$239.52	108%
12	0.0084	2%	\$45.56	9%	\$253.88	115%
13	0.0045	1%	\$21.06	4%	\$250.88	109%
14	0.0024	0%	\$16.13	4%	\$208.32	89%
15	0.0034	2%	\$7.80	6%	\$53.16	73%
16	0.0174	5%	\$35.11	12%	\$122.63	98%

Annual operating cost vs emissions trade-off

Pareto optimal front, CEC climate zone 16, flat rate electric tariff

Annual operating cost vs emissions trade-off

Pareto optimal front, CEC climate zone 11, flat rate electric tariff

11

Simulation results: Hourly trends

- Heating load peaks in winter mornings
- Emissions are at their secondary peaks for both climate zones
- Potential electric grid constraints in winter morning hours as more homes electrify

Parametric analyses

 Scenario 1: Customer electric cost varies from default assumption (equivalently, vary electric-to-gas cost ratio ([\$/kWh] / [\$/therm]))

Percent change results for parametric variation of electric costs, CZ 11, flat rate electric tariff

Parametric analyses

 Scenario 2 : Emissions reduction credit

Parametric variation of emissions reduction credit, CZ 16, flat rate electric tariff

Key parameter correlations

- Heating fuel usage differential correlates to outdoor air temperature and time of day
- Heating-related emissions differential correlates with realtime grid emissions factor (and data source)

Findings

- In California, no "emissions balance point" and "economic balance point"
- Heating peak in winter mornings could lead to potential electric grid constraints as more homes electrify
- Under California electric and gas rates considered in the study, the cost to operate the heating system in heat pump mode is nearly double when compared to solo gas furnace

- CZ 11 The current rate ratio would need to be reduced by 55% to achieve 100% emissions reduction
- Significance of rate ratio and emissions credit (\$/tonne) in making dual fuel systems cost effective
- Limited benefits of using static switchover temperature control strategy
- Cost effectiveness ranges in California (TRC/TSB)

Presentation at conferences

ACEEE Hot Water and Hot Air Forum, Atlanta

ACEEE Summer Study, California

ETCC Summit, California

CalNEXT

CalNEXT's vision is to identify emerging electric technologies across six priority areas and bring them to the IOU energy efficiency programs portfolio.

To learn more and sign up for our email list, please visit **calnext.com**

Energizing California's Future

Next Event:

Invitation to be sent soon

Get in touch with us: Ava Donald

Program Manager Ava.Donald@icf.com

	Follow GET on LinkedIn: linkedin.com/cagastech	in	linkedin.com/company/icf-international/
		y	twitter.com/icf
icf.com		f	https://www.facebook.com/ThisIsICF/

About ICF

ICF (NASDAQ:ICFI) is a global consulting and digital services company with over 7,000 full- and part-time employees, but we are not your typical consultants. At ICF, business analysts and policy specialists work together with digital strategists, data scientists and creatives. We combine unmatched industry expertise with cutting-edge engagement capabilities to help organizations solve their most complex challenges. Since 1969, public and private sector clients have worked with ICF to navigate change and shape the future.