

Final Presentation- ET22SWG0010

Market Assessment of Emerging Ultra-Low NOx Burner Technologies

11/7/2023

Agenda

- Project Objectives
- Interview Questions
- SME interviews and Site Visits
- Technology Findings
- Hydrogen Blending ULN Burners
- Conclusion
- Recommendation

Project Objectives

- Collect market data and evaluate emerging ULN burner technologies
- Conduct a literature review to better understand burner technology and identify ULN burners
- Develop a list of SME's consisting of burner manufacturers and researchers to interview
- Conduct interviews and site visits to gather additional data on various ULN technologies

N burners iew gies

Interview Questions

Interview Questions

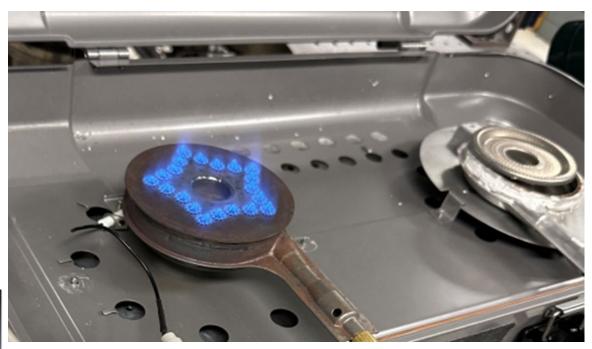
- A list of questions was developed to facilitate the interviews and site visits •
- The survey tool included both open ended questions in order to better understand the technology, • applications, market challenges, retrofit applications, and opportunities for broader product integration.
- The survey tool also collected specification data for each burner model •

SME Interviews

18 organizations contacted

33% response rate

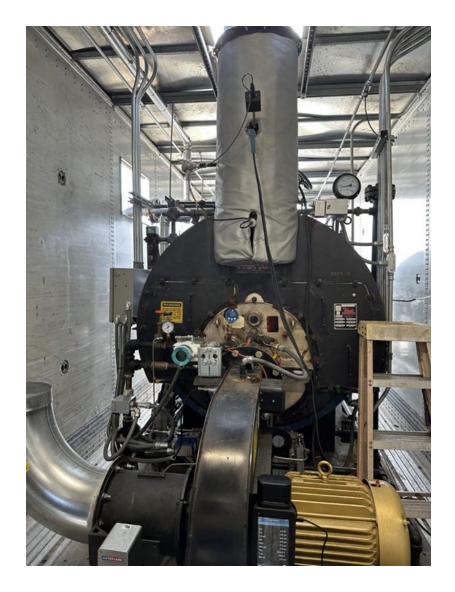
7 ULN Burner Manufacturers via the 2023 AHR Expo


Technology Findings

Technology Findings-LBNL

Low Swirl Burner

Ring Stabilizer Burner


Technology Findings – ClearSign Burners

- **Process Burner** ۲
- **Boiler Burner**
- Flare Burner
- Patented ClearSign CORE Technology

Source: https://www.clearsign.com/process-burners/

Technology Findings- Rogue Combustion

Firetube Boiler Burner

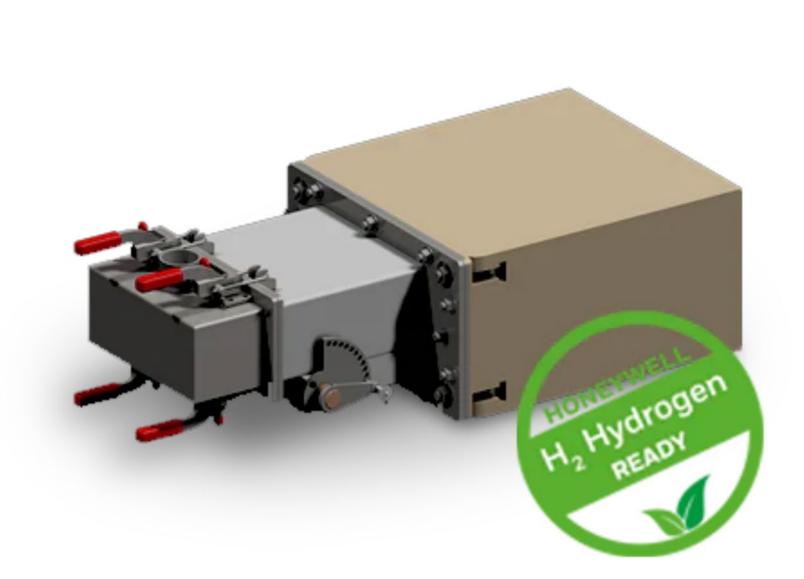
• Demonstrated 1ppm NOx during site visit

12

Technology Findings – Powerflame Incorporated Burners

- Ultra Cmax burner
- NP2 burner
- NVC burner

Technology Findings - Vitotherm


- ULN burner line coming late 2023
- <5ppm NOx, 0ppm CO
- CA greenhouse market

14

Technology Findings-Honeywell

- Oxy-Therm[®] FHR Burner
- Ideal for high temperature applications

<u>Source:</u> <u>https://www.kromschroeder.de/marketing/adlatus/techlipedi</u> <u>a/out/index.php?map=id_map_reh_20220104_155035-en</u>

Technology Findings – Micron FiberTech

- Tube Burners
- In-Ward-Fired Cone (IWFC) Burners

Source: <u>IWFC Low NOx Burners : Micron Fiber</u> <u>Tech (mft-co.com)</u>

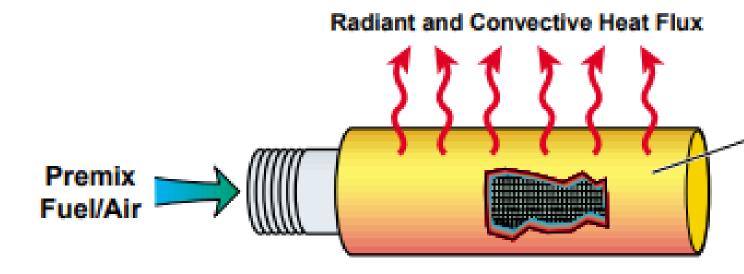
Technology Findings- Cleaver Brooks

- SBR-5 ULN Burner
- <5ppm NOx with FGR

Source: <u>SBR-5 Boiler Burner | Cleaver-Brooks</u> (cleaverbrooks.com)

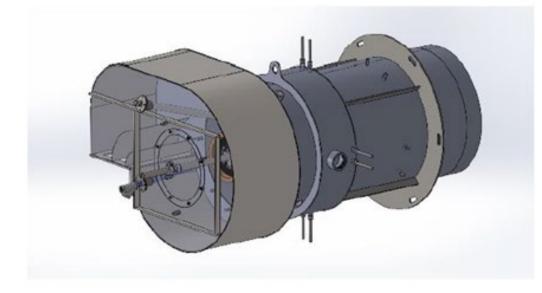
17

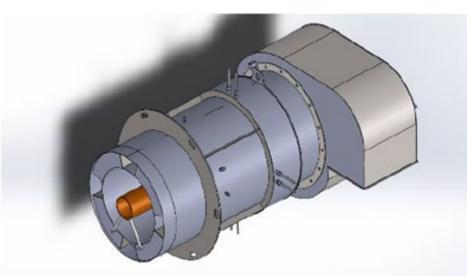
Technology Findings- CIB Unigas


- ULN burner design in development
- Testing hydrogen with their ULN burners up to 100% in laboratory setting
- Entered CA marketplace early 2023

Technology Findings- ALZETA

- ALZETA[®] CSB[™]
- Duratherm™
- ALZETA[®] nanoSTAR™

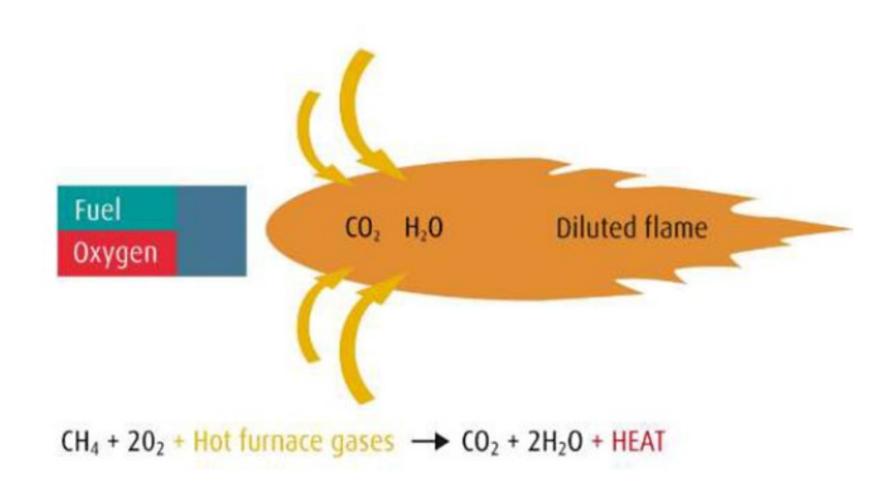



DuraTherm (alzeta.com)

DURATHERM Porous Ceramic Firing Surface • COLD on the inside • HOT on the outside

Technology Findings – Altex Technologies Corporation

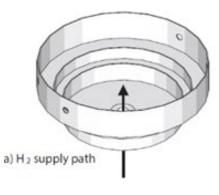
- Near-Zero NOx Burner (NZNB)
 - Post-combustion NOx reduction

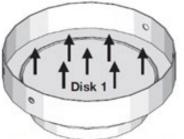


Kelly, John. Masuda, Brandon. (2016). California Energy Commission. *Near-Zero NOx Burner*. Publication number: CEC-500-2018-016

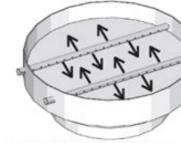
20

Technology Findings – Linde Technologies

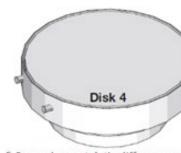

Flameless Oxyfuel Burner



Von Scheele, J. Carlsson, A. Jonsson, M. et al. (2022). Linde Technology. New Oxyfuel Technology for Energy-efficient and Ultra-low NOx Annealing of Steel


Technology Findings – Swiss Federal Laboratory for Materials Science and Technology

Catalytic Hydrogen Combustion Burner ۲



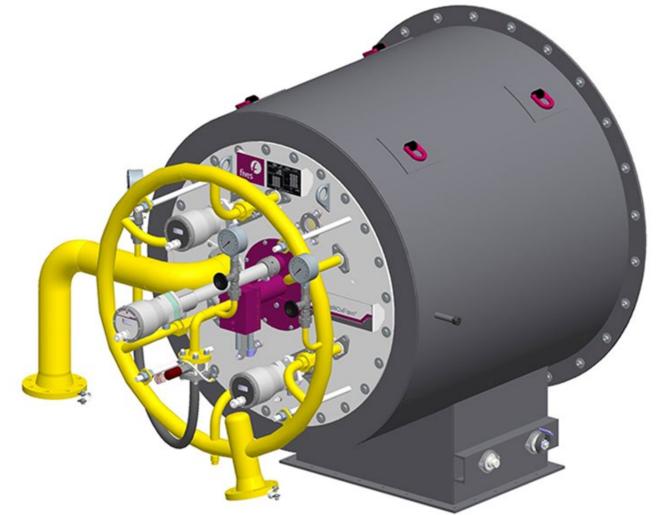
b) H₂ diffuser disk, for even distribution of H 2 SiC foam 100 ppi

d) Air supply tubes and horizontal distribution

f) Secondary catalytic diffuser combustion disk SiC foam 60 ppi, Pt coated

Fumey, B. Buetler, T. Vogt, U.F. (2018). Applied Energy. 334-342. Ultra-low NOx emissions from catalytic hydrogen combustion

c) Primary catalytic diffuser combustion disk SiC foam 80 ppi, Pt coated


e) Air and H 2 diffuser disk SiC foam 40 ppi

Technology Findings- Fives Group

- Pillard NANOxFLAM[®] Burner •
- Recognized by European Union as a Best ۲ Available Technique for preventing and minimizing NOx emissions

"Pillard NANOxFLAM® Boiler Burners." Fives Group, www.fivesgroup.com/energy-combustion/burnerssystems/pillard-nanoxflam

Technology Findings – John Zink Hamworthy Combustion

- COOLstar[®] Burner ٠
- SOLEX[™] Burner
- Rapid Mix Burner (RMB[™])

SOLEX Burner-5 Ppm NOx Performance. John Zink Hamworthy Combustion, 2018.

Burner Name	Organization	NOx	со	BTU Firing Range	FGR Present	Technology Description
Catalytic Hydrogen Burner	Swiss Federal Laboratory for Materials Science and Technology	<9.49 ppm <0.38 ppm at 33% H2	0 ppm	n/a	No	Catalytic oxidation process involving Pt coated porous SiC foams with non-premixing hydrogen and air
ClearSign Core™ Boiler Burners	ClearSign	<2.5 ppm	<50 ppm	4-100 MMBtu/hr	Internal FGR	Combination of air fuel premixing, internal FGR, patented distil flame holder technology
ClearSign Core™ Flare Burner	ClearSign	<15 ppm	<15 ppm	1–30 MMBtu/hr	Internal FGR	Combination of air fuel premixing, internal FGR, patented distil flame holder technology

Applications

Residential and commercial cooking appliances

Firetube boilers

Digestor gas, landfill gas, thermal oxidizers, vapor combustors, water treatment plants, coker heaters

Bui	rner Name	Organization	NOx	со	BTU Firing Range	FGR Present	Technology Description	Applie
	earSign Core™ ocess Burner	ClearSign	<5 ppm	<50 ppm	20 MMBtu/hr (Natural Draft Operation)	Internal FGR	Combination of air fuel premixing, internal FGR, patented distil flame holder technology	Vertic cabin steam ethyle
со)OLstar®	John Zink Hamworthy Combustion®	<15 ppm	n/a	1.7-20 MMBtu/hr	Yes	Proprietary flue-gas entrainment and mixing technology	Large coker platfo heate ammo ethyle heate
CS	B™	ALZETA®	<7 ppm	n/a	2 – 65 MMBtu/hr firetube boiler Up to 125 MMBtu/hr watertube boiler	FGR optional	metal-fiber burner, patented premixed surface-stabilized combustion process	Comn proce

olications

tical cylindrical canned heaters, bin heaters, steam generators, am methane reformer heaters, ylene cracking furnaces

ge industrial processes such as er heaters, horizontally fired formers, crude and vacuum ters, down fired methanol, monia, hydrogen reformers, ylene cracking furnaces, hot oil ters, charge heaters, and reboilers

nmercial and industrial boilers and cess heaters

Burner Name	Organization	NOx	СО	BTU Firing Range	FGR Present	Technology Description	Appli
Duratherm™	ALZETA®	<7 ppm	n/a	16 MMBtu/hr	n/a	Ceramic-fiber burner, premixed surface- stabilized combustion process using patented PYROCORE® technology	Resid and b furna equip
Firetube Boiler Burner	Rogue Combustion ¹	<2.5 ppm	<50 ppm	4-100 MMBtu/hr	Internal FGR	Combination of air fuel premixing, internal FGR, patented distil flame holder technology	Firetu
Flameless Oxyfuel Combustion Burner	Linde Technologies	<9 ppm	n/a	n/a	FGR present	Flameless oxyfuel technology which replaces nitrogen in air with pure oxygen to boost efficiency	most but n furnad

olications

idential and commercial heaters I boiler applications. Air heaters, naces, commercial cooking ipment

tube boilers

st types of furnace applications, most notably steel reheating naces

Burner Name	Organization	NOx	со	BTU Firing Range	FGR Present	Technology Description	Appli
IWFC Low NOx burners	Micron Fiber- Tech	<9 ppm (standard) <5 ppm options available for certain applications	Near zero	16 MMBtu/hr	n/a	Proprietary metal fiber technology. Compact flame with stainless steel shell	lmme heate heatir
Low Swirl Burner	LBNL	<9 ppm	<50 ppm	4-60 MMBTu/hr	No FGR	Air swirler, premixed fuel	Boiler heatir
nanoSTAR™	ALZETA®	<3 ppm	n/a	60 MMBtu/hr	n/a	Premixed, surface- stabilized combustion process	Indust drive applic

olications

nersion Tube heating, direct air Iters, steam boiler heating, water Iting

ers for wastewater treatment, IR iting, on-demand water heaters

ustrial gas turbines for mechanical re and power generation plications

Burner Name	Organization	NOx	со	BTU Firing Range	FGR Present	Technology Description	Appli
NP2 burner	Powerflame Incorporated	<9 ppm	Low CO	700-6,100 MBtu/hr	No FGR	A patented premixed surface stabilized combustion all-metal firing head technology	Proce boiler conve distille
NVC Burner	Powerflame Incorporated	<9 ppm	<50 ppm	2–64 MBtu/hr	No FGR	A patented premixed surface stabilized combustion all-metal firing head technology	Wide proce
NZNB Burner	Altex Technologies Corporation	<5.7 ppm	<50ppm	3.1-6.9 MMBtu/hr	FGR present	Patented multi flame zone technology with post-combustion Nox reduction process	Firetu water

VICF

olications

cess heating in hospitals, furnaces, lers, ovens, bath vaporizers for LNG iversion, autoclave ovens, tillery/brewery

le variety of commercial, industrial, cess applications

tube boilers, commercial boilers, er heaters, process heaters

E	Burner Name	Organization	NOx	СО	BTU Firing Range	FGR Present	Technology Description	Applie
	Oxy-Therm® ourner	Honeywell	<9 ppm	n/a	1–24 MBtu/hr	No FGR	Patented staged oxygen design. No excess O2 required for complete combustion	High t furnac incine linear rehea
	Pillard NANOxFLAM®	Fives Group	<9 ppm	<10 ppm	5–60 MW (17MBtu/hr– 54MBtu/hr)	FGR Present	Patented premix technology	Firetu boiler: multi-
	Ring Stabilizer Burner	LBNL	<9 ppm	n/a	scalable	No FGR	Premixed air and fuel at low velocities, natural draft	Reside equip

olications

h temperature applications like naces, glass furnaces, day tanks, nerators, metal-heating furnaces, ar and rotary hearth furnaces, eat furnaces

tube boilers and water tube ers, as well as single burner and ti-burner applications.

idential and commercial cooking ipment

Burner Name	Organization	NOx	со	BTU Firing Range	FGR Present	Technology Description	Applie
RMB™	John Zink Hamworthy Combustion®	<9 ppm	<25 ppm	Up to 300 MMBtu/hr	FGR Present	Rapid premixing system of air and fuel with proprietary burner geometry	Boiler furnac boiler
SBR-5 ULN burner	Cleaver Brooks	<5 ppm	n/a	10.5-42 MMBtu/hr	FGR present	Unique firing head to achieve controlled combustion	Firetu Proce proce hospit dry cl applic
SOLEX™	John Zink Hamworthy Combustion®	<5 ppm	Near zero	1 MMBtu/hr- 20MMBtu/hr	No FGR	Patent pending AlRmix™ technology and COOLmix™ technology	Variet upfire fired a

PICF

olications

ers, retrofits, refractory-lined naces for dryers, or fluid bed er-warm up applications

tube and water tube boilers, cess steam heating, industrial cess heating, waste heat recovery, pital space heating, laundry and cleaning, refinery, petrochemical plications

iety of applications including ired down fired, or horizontally d applications

Burner Name	Organization	NOx	со	BTU Firing Range	FGR Present	Technology Description	Appli
Super Low NOx Series (10 MW N1060V)	CIB Unigas	<9 ppm Still undergoing testing	n/a	n/a	FGR Present	Staged combustion and FGR technology	boiler
Tube Burners	Micron Fiber- Tech	<9 ppm	n/a	100 MMBtu/hr	n/a	Proprietary metal fiber technology	Dryers ovens (powo outdo
Ultra CMAX Ultra- Low NOx burner	Powerflame Incorporated	<9 ppm	<50 ppm	700-6,100 MBtu/hr	Yes	Premixed firing head and reduced blower power	Firetu hospit bath v autoc
Unreleased model (as of July 2023)	Vitotherm	<5 ppm	0 ppm	2–34 MMBtu/hr	n/a	n/a	Greer applic

olications

ers

ers, coffee roasters, Food service, ens, industrial furnaces, paint wder) curing, sugar condenser, door IR heating

tube boilers, Process heating in pitals, furnaces, boilers, ovens, h vaporizers for LNG conversion, oclave ovens, distillery/brewery

enhouse applications, indoor olications

Hydrogen Blending and ULN Burner

Hydrogen Blending and ULN Burners

Burner Name	Organization	Hydrogen Blends tested	NOx
Low Swirl Burner	LBNL	100%	<9ppm
ClearSign Core™ Boiler Burners	ClearSign ¹	80%	<2.5ppm
Firetube Boiler Burner	Rogue Combustion ¹	80%	<2.5ppm
ClearSign Core™ Process Burner	ClearSign	100%	<5ppm
Ultra CMAX Ultra-Low NOx burner	Powerflame Incorporated	30%	<9ppm
ULN burner pending release by the end of 2023	Vitotherm	25%	<5ppm
Super Low NOx Series (10 MW N1060V)	CIB Unigas	75% (field) 100% (lab)	The exact ongoing to representa
Oxy-Therm FHR Burner	Honeywell	20%	<9ppm
COOLstar [®] burner	John Zink Hamworthy Combustion	100%	<15ppm
Flameless Oxyfuel Combustion Burner	Linde Technologies	100%	<9ppm
Catalytic Hydrogen Burner	Swiss Federal Laboratory for Materials Science and Technology	66%H2 *this is a H2-O2 ratio, this burner does not use natural gas.	<9.49ppm <0.38ppm

t number is unclear due to testing; however, tatives claim ULN levels.

m m at 33%H2

Conclusion

Conclusion

Total of 25 ULN Burner Models Identified

- This study concluded that most ULN burners are easily able to be retrofitted into current heating systems such as boilers and furnaces without having to replace the entire unit.
- Since most ULN burners are smaller and compact, without the need for expensive add-ons like SCR which occupy additional space, manufacturers claim that operating costs are less compared to older low NOx burners, and size isn't usually concern for retrofits
- Most ULN technologies include some form of premixed air and fuel
- 11 ULN Burner models have been tested with hydrogen blends ranging from 20– 100%
- Barriers:
 - Manufacturers have sited regulatory challenges, brand recognition, difficulty obtaining permits, lack of local representation as barriers to implementing their technology.

36

Recommendation

Project Recommendations

- Further cost analysis to quantify the benefits of ULN burner retrofits is recommended to further encourage its adoption.
- The study also recommends further testing of hydrogen blends with ULN burners in different equipment to further demonstrate how newer ULN burners perform in older equipment

Next Event:

Topic: Annual Research Plan Update When: December 5, 2023 1:00–2:00 PM PDT

Invitation to be sent soon

Get in touch with us: **Brian Maloney**

Program Manager 1.415.677.7161 Brian.Maloney@icf.com

About ICF

ICF (NASDAQ:ICFI) is a global consulting and digital services company with over 7,000 full- and part-time employees, but we are not your typical consultants. At ICF, business analysts and policy specialists work together with digital strategists, data scientists and creatives. We combine unmatched industry expertise with cutting-edge engagement capabilities to help organizations solve their most complex challenges. Since 1969, public and private sector clients have worked with ICF to navigate change and shape the future.